skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Darvish, Kourosh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Tan, Jie; Toussaint, Marc; Darvish, Kourosh (Ed.)
  2. Tan, Jie; Toussaint, Marc; Darvish, Kourosh (Ed.)
    Most successes in autonomous robotic assembly have been restricted to single target or category. We propose to investigate general part assembly, the task of creating novel target assemblies with unseen part shapes. As a fundamental step to a general part assembly system, we tackle the task of determining the precise poses of the parts in the target assembly, which we term “rearrangement planning". We present General Part Assembly Transformer (GPAT), a transformer-based model architecture that accurately predicts part poses by inferring how each part shape corresponds to the target shape. Our experiments on both 3D CAD models and real-world scans demonstrate GPAT’s generalization abilities to novel and diverse target and part shapes. 
    more » « less
  3. Tan, Jie; Toussaint, Marc; Darvish, Kourosh (Ed.)
    Contacts play a critical role in most manipulation tasks. Robots today mainly use proximal touch/force sensors to sense contacts, but the information they provide must be calibrated and is inherently local, with practical applications relying either on extensive surface coverage or restrictive assumptions to resolve ambiguities. We propose a vision-based extrinsic contact localization task: with only a single RGB-D camera view of a robot workspace, identify when and where an object held by the robot contacts the rest of the environment. We show that careful task-attuned design is critical for a neural network trained in simulation to discover solutions that transfer well to a real robot. Our final approach im2contact demonstrates the promise of versatile general-purpose contact perception from vision alone, performing well for localizing various contact types (point, line, or planar; sticking, sliding, or rolling; single or multiple), and even under occlusions in its camera view. Video results can be found at: https://sites.google.com/view/im2contact/home 
    more » « less